Краткая информация о звуковых лампах

102

Принцип действия всех электронных ламп основан на одном — движении заряженных частиц (электронов) в электростатическом поле. На рисунке схема конструкции простейшей лампы (диода) косвенного накала:

звуковая лампа

Лампа представляет собой стеклянный баллон, в котором создан высокий вакуум (10-5 – 10-7 тор). У классических ламп формы электродов похожи и представляют собой концентрические «цилиндры». Смысл всего состоит в том, что при нагреве катода, электроны возбуждаются и покидают его. Катод прямого накала представляет собой попросту вольфрамовую нить как в обыкновенной осветительной лампе. Такие катоды применяются в тех случаях, когда нет необходимости создавать на катоде особый режим. В большинстве ламп используется катод косвенного накала. В этом случае нить накала помещается в металлическую трубку. На некотором расстоянии от катода расположен анод – электрод, который является «конечной остановкой» электронного потока. Для управления скоростью движения электронов от катода к аноду применяются дополнительные электроды. Сетки подразделяются на 3 типа. Управляющие, экранные и защитные (антидинатронные). Сетка представляет собой проволочную спираль, навитую на металлические стойки (траверсах), зажатые между двух слюдяных фланцев. Этими же фланцами удерживаются траверсы анода и катода. Так же встречаются лампы, содержащие несколько электродных систем. Такие лампы называются комбинированными. В зависимости от мощности лампы, ее электроды и корпус могут быть изготовлены из различных материалов, т.к. с увеличением проходящего через ее тока увеличивается рассеиваемая мощность.Вполне понятно, что каждый тип ламп имеет свои оригинальные параметры и характеристики. Прежде всего, выясним рабочие режимы ламп. Для создания нормального электронного потока, в межэлектродных пространствах лампы создаются особые электростатические потенциалы. Эти потенциалы определяются напряжениями, действующими на ее электродах. Рассмотрим основные рабочие режимы:

  •  Предельно допустимое анодное напряжение (Ua max):

Напряжение между анодом и катодом, в случае превышения которого, происходит пробой. При холодном катоде это напряжение больше. То же самое относится к сеточным напряжениям.

  • Предельно допустимый анодный ток (Ia max):

Предельно допустимое значение тока в анодной цепи. По сути дела, ток, проходящий через лампу, за вычетом незначительной доли, «вытянутой» потенциалами сеток.

  • Напряжение накала (Uн):

Типовое напряжение, подводимое к нити накала (подогревателя), при котором катод достигает температуры, необходимой для термоэлектронной эмиссии, в то же время лампа сохраняет заявленные параметры долговечности.

  • Ток накала (Iн):

Ток, потребляемый нитью накала.

Еще есть ряд характеристик, обусловленных конструкцией ламп, влияющих на параметры узла, собранного на этой лампе:

  • Крутизна характеристики (S):

Отношение приращения анодного тока к приращению напряжения на управляющей сетке. Т.е. мы можем определить, на сколько изменится анодный ток при изменении управляющего напряжения на 1В.

  • Внутреннее сопротивление лампы (Ri):

Отношение приращения анодного напряжения к соответствующему приращению анодного тока. В некотором роде это можно сравнивать с коэффициентом передачи тока у транзистора т.к. при увеличении управляющего (положительного) напряжения, увеличивается анодный ток. Внешне это выглядит как уменьшение сопротивления. Естественно, у лампы нет как такового активного сопротивления. Оно определяется межэлектродными емкостями и носит реактивный характер.

  • Статический коэффициент усиления (µ):

Отношение приращения анодного напряжения к приращению управляющего вызывающих одинаковое приращение анодного тока. Т.е. по сути показывает во сколько раз эффективнее приращение управляющего напряжения на 1В, чем аналогичное приращение анодного напряжения.

Маркировка ламп:
Некоторые параметры и конструктивные особенности ламп можно узнать по их маркировке:

1-й элемент – цифра, показывающая округленное напряжение накала

2-й элемент – буква, показывающая тип лампы:
А – частотно-преобразовательные лампы с двумя управляющими сетками.
Б – диод-пентоды
В – лампы со вторичной эмиссией
Г – диод-триоды
Д – диоды, в том числе демпферные
Е – электронно-световые индикаторы
Ж – высокочастотные пентоды с короткой характеристикой. В том числе пентоды с двойным управлением
И – триод-гексоды, триод-гептоды, триод-октоды.
К – пентоды с удлиненной характеристикой.
Л – лампы со сфокусированным лучом.
Н – двойные триоды.
П – выходные пентоды, лучевые тетроды
Р – двойные тетроды (в том числе лучевые) и двойные пентоды.
С – триоды
Ф – триод-пентоды
Х – двойные диоды, в том числе кенотроны
Ц – кенотроны, относящиеся к категории приемно-усилительных ламп. (специализированные выпрямительные приборы имеют особую маркировку)
Э – тетроды

3-й элемент – цифра, указывающая порядковый номер типа прибора (т.е. порядковый номер разработки лампы в данной серии. Например 1-я разработанная лампа из серии 6-и вольтовых пальчиковых двойных триодов – 6Н1П).

4-й элемент – буква, характеризующая конструктивное исполнение лампы:

А – в стеклянном корпусе диаметром до 8мм.
Б – сверхминиатюрные, в стеклянном корпусе диаметром до 10,2 мм
Г — сверхминиатюрные, в металлостеклянном корпусе диаметром более 10,2 мм
Д – в металлостеклянном корпусе с дисковыми впаями (встречаются, в основном, в СВЧ технике)
К – в керамическом корпусе
Н — сверхминиатюрные, в металлокерамическом корпусе (нувисторы)
П – миниатюрные в стеклянном корпусе (пальчиковые)
Р — сверхминиатюрные, в стеклянном корпусе диаметром до 5 мм.
С – в стеклянном корпусе диаметром более 22,5 мм.
у октальных ламп диаметром более 22,5 мм в металлическом корпусе отсутствует 4-й элемент маркировки.

0
Нравится схема? Поделитесь с другом.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

девять + 14 =